J/ Trigger in dA

Manuel Calderon for the Heavy-Flavor Group

Trigger Workshop at BNL October 21, 2002

First Priority

•	Implement a prototype of a J/□ trigger □ gain experience with □ L0
	L2 (and L2 abort, first time used in STAR)L3FMC
	EMCrates, bandwidth, etc.
	cross-checks with simulations
	laction how well can we simulate the trigger chain (rates)
	Prepare offline (reco + analysis) software
	understand the background in triggered events
	develop software to allow fast turn-around times during the run
	☐ does trigger do what we want it to do
	☐ improvements during the run
	exercise EMC software
	explore full e/h capabilities (SVT + TPC + EMC) of triggered events offline

Second Priority

- Without trigger and \sim 70 M min bias pA events: S \sim 100
- assuming a Yield/event $\sim 5 * 10^{-6}$ (into e⁺e⁻, in $\square y=1$, at y=0)
- Any (reasonable) trigger should only enhance the signal
- If we are lucky we have a fair shot this year
- maybe not for publication but for **proof of principle**
- \square PHENIX so far S ~ 30

Meet the challenge:

- Quarkonium physics only will work if we use the full capacities of STAR (something not exercised so far)
-] L0++, L2
- ☐ SVT (dE/dx, tracking ☐ e/h, ☐m/m)
- ☐ EMC (trigger, e/h, possibly ☐p/p)

The (naïve?) Plan

 Min bias dA □ ~48 kHz □ □=2.26 b, Npart = 7.2, dN/d□ = 9

L0: trigger on 2 patches above threshold ☐ 10 - 20 kHz

```
□ L2 □ ~1000 Hz
```

algorithm ☐ EMC tower ADCs BBC (ZDC) \square calculate z, E_1 , E_2 , $\cos(\square_{12})$ \square M_{inv} $\square 2E_1E_2(1-\cos(\square_{12}))$

output: yes/nostore trigger info for later analysis

L3, Input ~100 Hz Max (maybe buys another factor ~2 at most) Balance increased systematic errors with reduced statistical errors?

DAQ ☐ 50 Hz

The Big Questions

- What can we do at L0?
- one patch vs 2 patches (discuss rates in a later slide)
- What data and with what quality do we get at L2?
- ☐ pedestals, dead channel map
- energy resolution on trigger level (need GeV scale, not ADC)
- cluster finder to improvez-resolution
- \square how fast can we get it? Need ~1-2 ms
- what does it cost to speed it up (Tonko says, If we can prove it works, but need more speed, can make a pitch for more \$)
- ☐ News break (for us): Transform Et ☐ E
- Does the L2 abort work, we never tried it, what are the problems?
- Running L2, how fast can we see that we screwed up etc.

Simulations so far ...

Rejection/Efficiency: Working on AuAu low multiplicity simulations only with lower multiplicity events. Use $S_{eff} = S/(2B/S + 1)$ up to now. Need dAu simulations, can probably get higher rejection

Background:

approx. d+Au multiplicity Select most peripheral 50% x-section: $dN/d\Box = 11$ (5.6 at 40%) to Minbias Au+Au (only last weekend did d+Au begin running...)

Signal:

Will use more realistic pt distribution to see where most signal sits. J/Psi simulated flat in pt and h to see efficiency vs pt Throw one J/Psi in an empty event

Need to also mix them into a background event.

Algorithm

- Energy, Position 1) Approximate the electron daughters with towers (or clusters)
- 2) Obtain vertex from BBC timing
- 3) Need at least 2 towers to make a pair (could require this at L0?)
- 4) Take all selected towers and make all possible pairs
- $M_{inv} \square 2E_1E_2(1-cos(\square_{12}))$ 5) Do cuts in M and $cos(\square)$..

Still exploring possibilities Towers, clusters, cluster size?

Algorithm: Need to explore various ideas

What are the best energy thresholds to use?

1, 1.5, 2 GeV? Want acceptable resolution and not to kill the signal.

First tested with Tower Energy only: resolution not good!

Now testing various cluster approaches: 2 towers, or patches of various sizes (3x3, 5x5, 7x7, 9x9)

Acceptance and Trigger Efficiency J/L

- 1) Done at mid-rapidity with full EMC, currently done with half EMC
- 2) Trigger efficiency using Tower Energy (no clustering), and both towers with same threshold (1 GeV)

J/ Mass at Level 2

Decay Topology: large opening angle for most J/[

Background

Background rejection (very preliminary)

L0 (tower energy)	1 Tower	2 Towers (future?)
1 GeV	1.8	2.9
1.5 GeV	3.5	9.1
2.0 GeV	8.3	55.4
L2 (tower energy mass) Rejection	Rejection	

1.0 GeV, 2.5 GeV6.641.5 GeV, 1.5 GeV11.32.0 GeV, 2.5 GeV91.6

1.0 GeV, 1.0 GeV

3.3

Note: for single tower algorithm.

Need to revisit with clusters.

Need to quantify this as $s_{\rm eff}$ (include signal and background in estimate) ...

Isolation cuts...

in patch Compare tower (or "cluster") energy to surrounding energy

Summary

Still many simulations and tests to do to arrive at a good L2 Algorithm:

- + Low multiplicity in d+Au will reduce the backgrounds
- Signal is faint ~ "one in a million"

Key factors (i.e. neet to ask for support) for

- L0, L2 trigger
- bandwidth (for test etc.)

If we're serious about J/Psi:

we have a reasonable chance next run (16 weeks Au+Au)

for that, we need to exercise the trigger THIS RUN J/Psi trigger fits in very nicely with Jeff's trigger scheme

if we don't test and get experience, this is bound to fail IMHO...

already a proof-of-principle would teach us a lot!!

Much Work Remains to be Done before We Can Announce Our Total Failure to Make Any Progress.

Half EMC acceptance (pT - \square)

